This page is partly deprecated as of January 1st, 2018. You can find updated information at

People Projects Publications Software Data Policy Press Videos FAQ Vintage
Projects Online Emotion Recognition
This project is aimed at building a system to recognize emotional expression given four physiological signals. Data was gathered from a graduate student with acting experience as she intentionally tried to experience eight different emotional states daily over a period of several weeks. Several features are extracted from each of her physiological signals. The first classifiers gave a classification result of 88% success when discriminating among 3 emotions (pure chance would be 33.3%), and of 51% when discriminating among 8 emotions (pure chance 12.5%). New, improved classifiers reach an 81% success rate when discriminating among all 8 emotions. Furthermore, an online classifier has now been built using the old method, which gives a success rate only 8% less than its old offline counterpart (i.e. 43%). We expect this percentage to sharply increase when the new methods are adapted to run online.

Group Members:

[mit][media lab + Room E15-419 + 20 Ames Street + Cambridge, MA 02139]