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Abstract

We apply a recently proposed technique – Multi-task Multi-Kernel Learning
(MTMKL) – to the problem of modeling students’ wellbeing. Because wellbe-
ing is a complex internal state consisting of several related dimensions, Multi-task
learning can be used to classify them simultaneously. Multiple Kernel Learning
is used to efficiently combine data from multiple modalities. MTMKL combines
these approaches using an optimization function similar to a support vector ma-
chine (SVM). We show that MTMKL successfully classifies five dimensions of
wellbeing, and provides performance benefits above both SVM and MKL.

1 Introduction

Depression is a widespread and serious problem, disproportionately affecting college-aged individ-
uals [20]. The ability to handle negative life events without becoming depressed, termed resilience,
depends on several factors related to overall wellbeing; these include social support, engagement
with work, happiness [18], physical health [4], and sleep [19].

To better understand the factors that contribute to wellbeing and resilience among college students,
researchers at MIT and Brigham and Women’s Hospital are conducting an ongoing study called
SNAPSHOT: Sleep, Networks, Affect, Performance, Stress, and Health using Objective Techniques
[14]. As the name suggests, the study gathers a massive amount of data about the participants,
including five measures of their wellbeing: stress, health, energy, alertness, and happiness.

Previous attempts to analyze this data have looked at individually classifying academic performance,
stress, sleep, mental health and happiness [7], [15], [16]. While studying these individual compo-
nents is informative, the true goal of the research is to be able to model and predict a student’s overall
wellbeing: a hidden, internal state consisting of a number of the factors mentioned above. The pur-
pose is both to gain insight into factors that could potentially improve students’ wellbeing, but also
to detect when a student’s wellbeing is suffering and therefore help direct intervention efforts.

This work applies Multi-Task Multi-Kernel Learning (MTMKL) [8], to the problem of modeling the
five components of wellbeing collected from the SNAPSHOT study. We show that MTMKL is well
suited to this problem because of its ability to intelligently combine data from multiple modalities,
and share this information among multiple related tasks.

2 Related Work

Numerous studies have used multi-modal data to classify affective states that relate to wellbeing,
such as happiness and stress (e.g., [1], [17]). However, it remains a difficult problem, with classifi-
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cation accuracies typically ranging from 65-72% [1] [7] [10] when modeling ambiguous outcomes
like mood, happiness, or stress.

Multi-view learning methods study how to effectively combine data from multiple disparate sources
[21], making them ideal for Affective Computing studies with data from multiple modalities. A
view in this case refers to a subset of related features; for example, one view could be defined as the
features from a physiological sensor, while another contains features collected with a smartphone.
A common approach to multi-view learning is Multiple Kernel Learning (MKL) [6], in which each
view or modality is represented by its own kernel function.

Because our application involves classifying multiple highly related outputs (i.e. the five related
measures of wellbeing), we can also benefit from Multi-task learning (MTL). Multi-task learning
is a special type of transfer learning [11], in which a classifier is trained on several related tasks
at once, while sharing information across the tasks [3]. It is particularly useful if each task is a
one-dimensional aspect of a more complex unknown state of the user [8]; for example, related
dimensions of wellbeing. MTL can also be applied by defining a ‘task’ as classifying the data from
a particular user, and thus allowing the model to better accommodate sindividual differences.

Recent work by Kandemir [8] has extended and combined these two techniques in a method dubbed
Multi-Task Multi-Kernel Learning (MTMKL). Broadly, the classifier combines the kernels for each
modality using a set of kernel weights for each task. These weights are regularized globally, allowing
information about the weighting to be shared across tasks.

3 Dataset

This dataset was collected from 68 students over 30 days each, resulting in over 2000 days of phys-
iological, survey, and smartphone data. The extensive data makes feature extraction and selection
critically important. Since this process has been described in detail in previous work [7], here we
simply give a brief overview. Each feature was computed at the granularity of one day, defined
from 12:00am to 11:59pm. Features were selected in order to optimize validation accuracy in clas-
sifying self-reported happiness, using an iterative process involving both Wrapper Feature Selection
(WFS) [5], which tests which subsets of features work most effectively with the desired classifier,
and filtering based on Information Gain. The eventual dataset contains 6, 81, 15, and 98 features
in the data modalities mobility, smartphone, survey, and physiology, respectively (this was reduced
from original feature set sizes of 15, 289, 32, 426).

3.1 Mobility

During the study, an app on the participants’ smartphones logged their GPS coordinates throughout
the day, which were used to compute a variety of features; for example, distance traveled, the radius
of the minimal circle enclosing the subject’s location samples, and time spent on the university
campus [7]. Whether the phone’s data signal came from WiFi or GPS was used to approximate the
time the participant spent outdoors. Finally, a Gaussian Mixture Model (GMM) was used to induce
a probability distribution over each participant’s locations, and thereby compute features related to
the likelihood of the location pattern of each day.

3.2 Smartphone

The smartphone logs provided information about the participant’s communication over phone and
SMS, as well as each time the phone screen was turned on or off. Features related to the timing,
duration, and frequency of these activities were computed, as well as the number of unique contacts
with whom the participant interacted.

3.3 Survey

Participants submitted daily self-reports on their academic activities, extra-curricular activities, ex-
ercise, sleeping, napping, studying, social interactions, and alcohol and drug consumption.
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3.4 Physiology

Participants wore an Affectiva Q sensor, which collected skin conductance (SC), skin temperature,
and acceleration at 8Hz. Because skin conductance relates to activity of the Sympathetic Nervous
System (SNS) – the body’s “fight or flight” response – it is frequently used in studies related to
emotion and stress [2]. Similarly, acceleration gives an indication of the participant’s physical ac-
tivity, which is strongly related to wellbeing [12]. A variety of signal processing and algorithmic
techniques were applied to the raw SC and accelerometer data to extract over 400 features, which
were then pruned using feature selection; see [7] for details.

3.5 Classification labels

Students in the SNAPSHOT study self-report their happiness, health, alertness, energy, and stress
using a scale from 0-100 every day in the morning and evening. In previous work [7], a binary
classification task for happiness was created by labeling the 30% of days which had the highest
evening happiness score as positive samples, and the 30% of days with the lowest evening score as
negative samples, then randomly partitioning this data into a train, validation and test set. We use the
same datasets to facilitate comparison with previous work, but extend them by creating additional
labels for the other 4 wellbeing measures. For a given day in the dataset, if a measure such as ‘health’
had a score higher than the median1 for this measure, it was labeled as a positive example; otherwise,
it was labeled as a negative example. Using this method we are able to retain all of the original data
points. Classifying each of the 5 measures is treated as one task in the MTMKL classifier. The final
dataset is composed of 5 tasks, 200 features, and 768 data points2.

4 Methods

4.1 Multiple kernel learning

As in typical MKL, we assign a kernel to each set of features that make up a modality. Here we
restrict the model space to using the same kernel function for each modality. In particular, we
represent each modality m by one kernel km. These are combined into a single kernel, kη , in
a convex combination parameterized by the modality weighting, η. Noting that x(m)

i is the ith
feature vector that contains only the features belonging to modality m, and M is the total number of
modalities, kη is defined as follows:

kη(xi,xj ;η) =

M∑
m=1

ηmkm(x
(m)
i ,x

(m)
j )

The optimal η can be learned from the data by maximizing an objective function similar to that of
the traditional support vector machine (SVM), but with the multiple kernel, kη , as defined above,
with the constraints that ηm > 0 ∀m and

∑M
m=1 ηm = 1. Noting that δi,j = 1 if i = j and 0

otherwise, αi is the ith dual coefficient term, and N is the total number of data points, we write the
objective function for the MKL method as follows:

max
α

J(α,η) = max
α

 N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj

(
kη(xi,xj ;η) +

δi,j
2C

)
4.2 Multi-task Multi-Kernel Learning (MTMKL) machines

Following Kandemir et al. [8], we formulate the multi-task multi-kernel learning (MTMKL) method
over T tasks, such that each task t learns a different weighting, η(t), on the modalities. These weights
are regularized globally by penalizing divergence. Specifically, the objective function Kandemir has
proposed minimizes the maximum of the sum of the regularizer term Ω({η(t)}Tt=1) and the sum of
the objective functions of all task learners, Jt(α(t),η(t)):

1The median for each measure is computed over all participants from the evening self-reports.
2The size of the dataset is reduced because of missing data
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min
η

[
max
α

(
Ω({η(t)}Tt=1) +

T∑
t=1

Jt(α
(t),η(t))

)]

For simplicity of notation, we let the inner optimization problem be Oη such that the objective
function of MTMKL becomes minη Oη .

In this paper we focus on two regularization functions, namely L1: the inner product regularizer,
which penalizes negative total correlation between task weights and L2: the l2-norm regularizer,
which penalizes the Euclidean distance between task weights [8]. In both regularizers, ν is used to
weight the importance of the divergence. In particular, when ν = 0 the tasks are treated indepen-
dently and as ν increases, the tasks weights become increasingly restricted to being the same.

We then use the iterative gradient descent method proposed by Kandemir to train the model given
the model parameters [8]. This method iterates between (1) solving an SVM for each task given
η(t) and (2) updating η in the direction of −∂Oη/∂η

(t) (see Algorithm 1). Using the constraints on
the kernel function and noting x(t,m)

i is the ith feature vector for task t and modality m, the partial
derivative of this inner maximization problem is:

∂Oη

∂η
(t)
m

= −2
∂Ω(η(t))

∂η
(t)
m

− 1

2

N∑
i=1

N∑
j=1

α
(t)
i α

(t)
j y

(t)
i y

(t)
j

(
k(t)m (x

(t,m)
i ,x

(t,m)
j ) +

δi,j
2C

)

We note that the gradient of the L1 regularizer is

∂Ω1(η(t))

∂η
(t)
m

= −ν
T∑

s=1

η(s)
m

and the gradient of the L2 regularizer is

∂Ω2(η(t))

∂η
(t)
m

= −ν
T∑

s=1

2(η(t)
m − η(s)

m )

For our implementation of this algorithm, we determined that the η’s had converged when the max-
imum change in any single task’s kernel weights (η(t)) was less than ε = 0.001. In addition, we
used a fixed step size of 0.01. This could be improved in future work by using a line search.

Algorithm 1 MTMKL Algorithm

1: Initialize η(t) as (1/T, ..., 1/T ), ∀t
2: while not converged do
3: Solve each single-task, multi-kernel support vector machine using η(t), ∀t
4: Update η(t) in the direction of −∂Oη/∂η

(t), ∀t
5: end while

4.3 Validation and testing

To choose the optimal parameter settings for each algorithm, we iterate over many possible combi-
nations of the ν and C parameters, the regularization functions (L1 and L2), and the kernel function
and kernel parameters. After finding the optimal parameters, we test the classifier by obtaining five
bootstrapped samples of the held-out test data, testing on each, and averaging the results.

5 Results

To assess the usefulness of MTMKL, we compare it to both a standard SVM and MKL. We found
that the optimal parameter settings were as follows: SVM used a linear kernel with C = 0.1, MKL
used an Radial Basis Function (RBF) kernel with β = 0.01 and C = 100, and MTMKL used an
RBF kernel with β = 0.01, C = 10, ν = 0.01, and an L2 regularizer.
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Table 1: Results for classifying the five wellbeing measures on held-out test data

SVM MKL MTMKL
Task Accuracy AUC Accuracy AUC Accuracy AUC
Happiness 68.48% 0.7535 69.58% 0.7593 74.30% 0.7963
Health 69.57% 0.7662 60.64% 0.7128 68.82% 0.7332
Alertness 67.08% 0.6748 59.48% 0.5453 56.41% 0.6029
Energy 60.25% 0.6102 56.66% 0.5331 64.40% 0.7087
Stress 69.57% 0.7981 66.45% 0.7106 70.91% 0.7465
All - - - - 64.80% 0.7050
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Figure 1: (a) ROC Curve for the MTMKL Classifier on the 5 bootstrapped samples of the held-out
test data (b) Kernel weight (η) convergence in happiness task, the other four tasks had very similar
convergence paths and final η values

Table 1 shows the performance of the three algorithms in classifying each component of wellbeing.
Surprisingly, we see that MKL generally underperforms a simple SVM; evidently, the implementa-
tion of MKL requires further improvement. In spite of this, MTMKL offers performance markedly
exceeding that of both SVM and MKL in the target task of classifying happiness, suggesting there
is an added benefit of learning the tasks together. For each additional task (health, alertness, energy,
and stress), the SVM and MKL models were re-trained and the parameters were tuned to optimize
performance on that task specifically. In contrast, the parameters for the MTMKL classifier were
chosen to optimize for performance in classifying happiness. In spite of this, MTMKL still offers
similar or superior performance in four of the five tasks. However, performance in classifying alert-
ness is low. Upon further investigation we found that optimizing for alertness increased MTMKL’s
performance in classifying health, stress, and alertness, although accuracy in classifying alertness
still did not exceed that of SVM. We will investigate how to further improve MTMKL’s performance
on all tasks in future work. For now, we emphasize that MTMKL provides the ability to classify
each of the wellbeing dimensions simultaneously, after training and optimizing only one model.
Since the ultimate goal of this research is to be able to predict a student’s overall wellbeing, this is a
compelling benefit.

Figure 1a shows the Receiver Operating Characteristic (ROC) curves obtained from classifying over-
all wellbeing using MTMKL on each bootstrapped sample of the held-out test data. Figure 1b shows
how the η values for the happiness task change as the algorithm is trained. We can see that very
few iterations are required before the optimal values are found. Note that the strongest weight is
placed on the Mobility modality (confirming previous results that Mobility led to the highest clas-
sification accuracy for happiness [7]), while the weights for the Physiology and Phone modalitues
are relatively low. The other four tasks showed the same pattern. This is an interesting result; if
MTMKL could automatically determine that a given data modality provides little additional benefit
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over the others, then it might be possible to reduce the overhead of running the study by limiting
the collection of this data type. However, these results are preliminary; the low weight could also
indicate that the feature extraction process for this modality requires improvement, or that more data
is required before such high-dimensional modalities can offer performance enhancements.

6 Conclusions and Future Work

This work has presented how MTMKL, a recently developed technique combining Multiple Kernel
Learning (MKL) and Multi-task Learning (MTL), is well-suited to the problem of using multi-
modal data to model complex internal states like wellbeing. MKL is used to learn the importance
of each data modality, which could help researchers assess what types of data need to be gathered
when running expensive user studies. MTL is used to simultaneously model several dimensions of
wellbeing as related tasks, so that each task can benefit from the others. We show that MTMKL
provides performance improvements over both a traditional SVM classifier and over MKL, and is
able to classify each of the wellbeing dimensions within a single model.

This work is only a first step, and many improvements and extensions can be made. Most obviously,
MTL can be applied so that each user is treated as a task, allowing the classifier to account for
individual differences, which can be significant in ambiguous outcomes like wellbeing. Because
the results revealed a strong benefit of multi-tasking in the problem, investigating other multi-task
learning methods such as GOMTL [9] or MLMTL [13] could be beneficial. There are also several
modifications that could be made to improve the MTMKL algorithm, such as using different kernel
types for each modality, testing different convergence criteria, and using a line search to improve
the gradient descent algorithm. Further, the dataset and features used were selected to facilitate
comparison with previous work, and were not optimized for the MTMKL problem. To extend
MTMKL, we could also define more fine-grained modalities (for example, skin temperature vs. skin
conductance features), or potentially even define one kernel per feature to perform feature selection
simultaneously with the classifier’s optimization function.
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