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Abstract

We explore the use of features derived from multiresolution analysis of speech and
the Teager Energy Operator for classification of drivers’ speech under stressed condi-
tions. We apply this set of features to a database of short speech utterances to create
user-dependent discriminants of four stress categories. In addition we address the prob-
lem of choosing a suitable temporal scale for representing categorical differences in the
data. This leads to two modeling approaches. In the first approach, the dynamics of
the feature set within the utterance are assumed to be important for the classification
task. These features are then classified using dynamic Bayesian network (DBN) models
as well as a model consisting of a mixture of hidden Markov models (M-HMM). In the
second approach, we define an utterance-level feature set by taking the mean value
of the features across the utterance. This feature set is then modeled with a support
vector machine and a multilayer perceptron classifier. We compare the performance on
the sparser and full dynamic representations against a chance-level performance of 25%
and obtain the best performance with the speaker-dependent mixture model (96.4% on
the training set, and 61.2% on a separate testing set). We also investigate how these
models perform on the speaker-independent task. Although the performance of the
speaker-independent models degrades with respect to the models trained on individ-
ual speakers, the mixture model still outperforms the competing models and achieves
significantly better than random recognition (80.4% on the training set, and 51.2% on

a separate testing set).

Zusamenfassung

In diesem Bericht untersuchen wir die Verwendung von Merkmalen der Sprachanal-
yse aufgrund mehrerer Zeitskalen zur Klassifikation der Sprache eines Fahrers unter
Stress. Diese Merkmale wenden wir auf eine Datenbank kurzer Sprachsequenzen an,
um vier sprecherabhangige Stresskategorien zu erstellen. Zusatzlich beschaftigen wir
uns mit der Auswahl der passenden Zeitskala fiir die Reprisentation klassenspezifis-
cher Unterschiede in der Datenmenge. Dies fiihrt zu zwei unterschiedlichen Model-
lierungsansitzen. Im ersten Ansatz wird vorausgesetzt, dass die dynamische Entwick-

lung der Merkmale, die innerhalb der Sprachsequenzen vorhanden ist, wichtig fiir die



Klassifizierung ist. Diese Merkmale werden klassifiziert mit Hilfe von dynamischen
Bayes Netzen (DBN) bzw. mit einer Mischung von Hidden Markov Modellen. Im
zweiten Ansatz definieren wir Merkmale auf Artikulationsebene, indem wir die Mit-
telwerte der Merkmale iiber die Sprachsequenzen berechnen. Diese Merkmalsmenge
wird dann mit einer Support Vector Maschine und einem Multilayer-Perzeptron mod-
elliert. Die Performanz der sparlichen und der voll dynamischen Darstellung wird
verglichen mit dem zufélligen Klassifikationsniveau von 25%. Das beste Ergebnis erhal-
ten wir hierbei mit einem sprecherabhiangigen Mischmodell (96.4% auf den Trainings-
daten und 61.2% auf unabhingigen Testdaten). Weiterhin untersuchen wir, wie diese
Modelle bei sprecherunabhingigen Aufgaben abschneiden. Obwohl die sprecherun-
abhingigen Modelle schlechter abschneiden als die auf einzelne Sprecher justierten
Modellen, ubertrifft das Mischmodell die konkurrierenden Modelle immer noch und
erzielt signifikant bessere Sprechererkennung als Zufallserkennung (80.4% auf den Train-
ingsdaten und 51.2% auf unabhingigen Testdaten).

Résumé

Nous explorons l'utilisation de représentations dérivées de I’analyse multirésolution
de la parole et de 'opérateur d’énergie de Teager pour la classification de la parole de
conducteurs en condition de stress. Nous appliquons cette analyse & corpus d’énoncés
courts pour créer des fonctions discriminantes dépendantes du locuteur pour quatre
catégories de stress. En outre nous adressons le probléme du choix d’une échelle tem-
porelle appropriée pour catégoriser les données. Ceci méne 3 deux approches pour la
modélisation. Dans la premiére approche, la dynamique des variables issues de I’analyse
d’un énoncé donné est supposée pertinente pour la classification. Ces variables sont
alors modélisées au moyen de réseaux bayésiens dynamiques (DBN) ou par un mélange
des modeles de Markov cachés (M-HMM). Pour la seconde approche, nous ne gardons
que les valeurs moyennes de ces variables pour chaque énoncé. Le vecteur résultant est
alors modélisé au moyen d’une machine 4 support de vecteur et d’un perceptron multi-
couches. Nous comparons les performances de ces deux approches 4 un tirage aléatoire
(25%), les meilleurs résultats étant obtenus avec le mélange de modeles dépendant du
locuteur (96,4% sur les données d’apprentissage, et 61,2% sur un jeu de test distinct).
Nous étudions également les performances de modeles indépendants du locuteur. Bien
que les performances se dégradent par rapport des modeles spé-
cifiques aux locuteurs, le mélange de modeéles surpasse encore les autres modeles et
obtient un taux de reconnaissance sensiblement meilleur qu’un tirage aléatoire (80,4%

sur les données d’apprentissage, et 51,2% sur le jeu de test).
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1 Introduction

Much of the current effort on studying speech under stress has been aimed at detecting stress
conditions for improving the robustness of speech recognizers; typical research of speech
under stress has targeted perceptual (e.g. Lombard effect), psychological (e.g. timed tasks),
as well as physical stressors (e.g. roller-coaster rides, high G forces) (Steeneken and Hansen,
1999). In this work we are interested in modeling speech in the context of driving under
varying conditions of cognitive load hypothesized to induce a level of stress on the driver.
The results of this research may be relevant not only to building recognition systems that
are more robust in the context described, but also to applications that attempt to infer the
underlying affective state of an utterance. We have chosen the scenario of driving while
talking on the phone as an application in which knowledge of the driver’s state may provide
benefits ranging from a more fluid interaction with a speech interface to improvement of

safety in the response of the vehicle.

The recent literature discussing the effects of stress on speech applies the label of stress
to different phenomena. Some work views stress as any broad deviations in the production of
speech from its normal production (Hansen and Womack, 1996; Sarikaya and Gowdy, 1998).
In discussing the SUSAS database for the study of speech under stress, Hansen et al. (1998)
go on to describe various types of stress in speech. These include the effects that speaking
styles, noise, and G-forces have on the speaker’s output, as well as the effect of states that
are often described under the label of emotions elsewhere in the literature (e.g., anxiety, fear,

or anger).

In an attempt to unify the often diverging views of stress that are being invoked by the
research in this field, Murray et al. (1996) have reviewed various definitions of stress, and
proposed a description of this phenomenon based on the character of the stressors. They
have hypothesized four levels of stressors that can affect the speech production process. At
the lowest level, these include direct changes on the vocal apparatus (zero-order stressors),
unconscious physiological changes (first-order stressors), and conscious physiological changes
(second-order stressors), At the highest level, changes can also be brought about by stimuli
that are external to the speech production process, by the speaker’s cognitive reinterpretation
of the context in which the speech is being produced, as well as by the speaker’s underlying
affective conditions (third-order stressors). In this paper, we follow this taxonomy and
investigate whether it is possible to discriminate between spoken utterances that have been

produced under the influence of third-order stressors with a varying degree of stress.



2 Speech Corpus and Data Annotation

The speech data used in the research presented in this paper was collected from subjects
driving in a simulator at the Nissan’s Cambridge Research Lab. Subjects were asked to drive
through a course while engaged in a simulated phone task: while the subject drove, a speech
synthesizer prompted the driver with a math question consisting of adding up two numbers
whose sum was less than 100. We controlled for the number of additions with and without

carry-ons in order to maintain an approximately constant level of difficulty across trials.

The two independent variables in this experiment were the driving speed and the fre-
quency with which the driver was given math questions. Each variable had two conditions —
slow and fast — resulting in four different combinations. Subjects drove at 60 m.p.h. in the
slow speed condition and at 120 m.p.h. in the fast speed condition (the perceptual speed
in the simulator is approximately half). One subject complained of motion sickness in the
fast speed condition, so in that case the speed was reduced to 100 m.p.h. The frequency
at which drivers were prompted with a math question was once every 9 seconds (slow con-
dition) or once every 4 seconds (fast condition). The driver’s answers were captured by a
head-mounted microphone and recorded in VHS format. The corpus analyzed here consists
of 598 utterances (154, 156, 137 and 151 for each subject respectively). The answers var-
ied from approximately 0.5 to 6 seconds, with the average length of an utterance being 1.6

seconds.

The objective of this work is to build automated systems that can discriminate between
stress conditions that are categorically different; consequently, it is necessary to devise an
annotation of the data that groups categorically similar utterances together for the purposes
of modeling the commonalities. The issue of how to label the data is one that deserves
particular attention since using different criteria to label the data can (and practically will)
lead to different ways to categorically partition the data set, possibly making it more or
less challenging to build systems that can discriminate between the selected categories. It
is possible, for instance, to assign labels to the data based on the state of the speaker or,
conversely, based on some measure which incorporates how listeners perceive the utterances.
No single approach is correct, and it is important to bear in mind the application when
deciding how to label the data. Cowie (2000) labels these two approaches as cause- and
effect-type descriptions to distinguish whether the aim is to capture information about the
speaker’s state at the time of encoding the speech versus effects on the listener when decoding.

For this work, we have labeled the speech corpus by matching each experimental condition

with a distinct category. We feel that this approach is more relevant for stress detection than,



for instance, the perceptual similarities and differences, if any, that might exist between the
utterances of the corpus. Although we have not conducted any formal perceptual studies on
this corpus, the first author has found that perceptual differences between these utterances
are not, clearly marked; therefore, labeling rules based on experimental conditions may be
more suitable for this modeling problem. This approach falls in line with a cause-type
description of the data set since it aims to capture the state of the speaker. However,
it is important to recognize that even this goal may not be fully achieved since a similar
experimental condition may not always translate into the same condition of stress. We have
therefore labeled the speech according to the stimulus condition used during the experiment,
where each condition was the result of a 2 x 2 factorial design involving the driving speed
(fast or slow) and the frequency with which the driver was prompted to solve the cognitive

task (every 4 or 9 seconds).

It is important to bear in mind that we are investigating whether an algorithm can be
trained to detect differences in the level of stress, and that in order to do this we have equated
categorically distinct experimental conditions with categories of stress. The reader should not
interpret this to be a statement about the categorical differences (perceptual or otherwise)
in the speech. At the onset of this investigation, it was not known whether such differences
existed. However, by investigating to what extent machine learning algorithms are able
to differentiate between labels established a priori on the basis of experimental conditions,
we may be able to conclude something about whether these labels actually correspond to

different categories of stress, or which of them, if any, is categorically distinct from the rest.

3 Feature Extraction

Nonlinear features of the speech waveform have received much attention in studies of speech
under stress; in particular, the Teager Energy Operator (TEO) has been proposed to be
robust to noisy environments and useful in stress classification (Zhou et al., 1998; Zhou
et al., 1999; Jabloun and Cetin, 1999). Another useful approach for analysis of speech and
stress has been subband decomposition or multi-resolution analysis via wavelet transforms
(Sarikaya and Gowdy, 1997,1998). Multi-resolution analysis and TEO-based features have
also been combined for recognizing speech in the presence of car noise and shown to yield
superior rates (Jabloun and Cetin, 1999). In this work we investigate a feature set consisting
of variants of features proposed in Jabloun and Cetin (1999) and in Sarikaya and Gowdy
(1998) based on the TEO and multi-resolution analysis and apply it to the task of modeling



categories of drivers’ stress.

The procedure we use is as follows. After sampling the speech signal at 8kHz, mul-
tiresolution analysis is applied to the discrete signal y[n] to decompose it into M = 21
bands corresponding to the frequency division shown in Figure 1. The decomposition in this
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Figure 1: Subband Decomposition

implementation is based on repeated iterations of the minimum-phase 8-tap low and high
pass filters associated with the orthogonal Daubechies-4 (Daubechies, 1992). Following the
decomposition, the average Teager energy is found for every subband signal according to

1 &
m pn=1
where N, is the number of time samples in the m® band and W¥(-) is the discrete Teager

energy operator:
U(y[n]) = y’[n] —yln — 1y[n + 1] (2)
An inverse DCT transform is then applied to the log of the energy coefficients to obtain the
TEO-based “cepstrum coefficients” E; (Jabloun and Cetin, 1999):
M
I[(m—20.5
E; = log(em) cos [W

m=1

] l=1--- L (3)

The extraction of the cepstral coefficients defined in (3) is applied to the speech waveform
at every frame. Define then EI"! as the L x 1 vector containing the cepstral coefficients from
the rth frame: B = [E ... EI)'. In order to reflect frame-to-frame correlations within
an energy subband, the following autocorrelation measure has been proposed (Sarikaya and
Gowdy, 1998):

it B
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ACE]l = ;e L (4)
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where 7 is the lag between frames, 7" is the number of frames included in the autocorrelation
window, and j is an index that spans all correlation coefficients within the same scale along
all frames to normalize the autocorrelation. Define the vector containing the logarithm of
the L autocorrelation coefficients as ACE_LI" = [log ACE!" -+, log AC’E[LT’]T]T We define

1,7
the frame-based feature vector as the set of L cepstral coefficients and the log of the L

autocorrelation coefficients:
El]

Fsil =
ACE L/

(5)

Taking the log of (4) is done to avoid modeling a finite support density distribution (which
results from the normalization of (4)) with a single or a small number of Gaussians in the
learning stage. The number of subbands used in this implementation was M = 21, resulting
from the 5-level decomposition sketched in Figure 1. The remaining constants were adjusted
empirically: 7 = 1 and T = 2 (to capture pairwise correlations of adjacent samples), and
L =10 (to compress the original information across 21 bands into 10). The resulting feature
vector after appending the correlation coefficients is therefore of dimensionality 20. The

frame features are derived from 24 msecs. of speech and are computed every 10 msecs.

4 Modeling Dynamics within the Utterance

4.1 Graphical Models

In this section we treat the dynamic evolution of the utterance features to discriminate be-
tween the different categories of driver stress and consider a family of graphical models for
time series classification. One of the most extensively studied models in the literature of time
series classification is that of a hidden Markov model (HMM). An HMM is often represented
as a state transition diagram. Such a representation is suitable for expressing first order
transition probabilities; it does not, however, clearly reveal dependencies between variables
over time, or clearly encode higher-order Markov structure. Nonetheless, representing an
HMM as a dynamical Bayesian net (shown with discrete states s; and continuous observa-
tions z; in figure 2), allows these statistical dependencies to emerge. This representation
also suggests some natural extensions to the structure of the HMM model and aids in the
development of general-purpose algorithms that may be used to do learning and inference
for a variety of structures. An assumption behind the hidden Markov model, as shown by

the dependency diagram of figure 2, is that the observations are independent of each other
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Figure 2: Graphical models compared in this paper

given the hidden state sequence. One may alleviate this limitation by incorporating some
dependency on past observations. A simple way to do this is through a first-order recursion
on the previous observation. This yields the autoregressive hidden Markov model (ARHMM)

(also known as a switching auto-regressive model).

The representational capacity of an HMM is also limited by how closely the number of
hidden states approximates the state space of the dynamics. Since the naive way to overcome
this limitation —namely, to increase the number of states of the hidden discrete node— yields
an increase in the number of parameters to be estimated, distributed state representations
which make use of fewer parameters have been proposed. One such structure is the factorial
hidden Markov (FHMM) model. In an FHMM the state factors into multiple state variables,
each modeled by an independent chain evolving according to the same Markovian dynamics
of the basic HMM (Ghahramani and Jordan, 1997).

One can also introduce dependencies between the chains to impose structure while re-
taining parsimony. For instance, the different state chains can be arranged in a hierarchical
structure such that, for any time slice, the state at any level of the hierarchy is dependent
on the state at all levels above it. (See figure 2 for a model with 2 chains.) The result
— a hidden decision tree evolving over time with Markovian dynamics — is called a hidden
Markov decision tree (HMDT) (Jordan, Ghahramani, and Saul, 1997).

The family of graphical models shown in figure 2 has in common a set of unobserved



discrete states distributed on a single or multiple chains, and continuous observation nodes.
The following formulation of the learning algorithms can be applied to any of the previous
structures, as well as to extensions not described here. For instance, a distributed state
representation may be combined with an autoregressive hidden Markov model to obtain an
autoregressive factorial HMM. We will assume that every discrete node has only discrete
parents —that is, the parameters associated with a discrete node consist of a conditional
probability table — and that the continuous nodes have a conditional Gaussian distribution.
We represent the hidden state as a vector s; = [st , o -,sgm), e ng)]’ to generalize to the
case where the hidden state is distributed along several chains, and the observations as the
d-dimensional set {x}_,. In general, a continuous node may have both continuous and
discrete parents. Since the kind of dependency on continuous nodes we are interested in is

first-order autoregressive, a conditional Gaussian node has distribution
p(xelxs 1,8 = 1) ~ N(xs; Bixy 1, %) (6)

where N (x; p1, X;) is a multivariate Gaussian distribution on the random variable x with
mean vector u, and covariance matrix ¥,. Letting x; 1 = I (the identity matrix) and B; = y;

in (6), we obtain the distribution on Gaussian nodes with only discrete parents.

We can do learning on these structures by applying the EM algorithm. First, we compute
the expected value of the complete data log likelihood given the observations, and holding
the current parameters constant (E step). We then maximize the expectation with respect
to the parameters to obtain a new estimate (M step). The observation-dependent term of
the complete log likelihood is given by

K Ty |J]

£ = B| g [T Pr(stixt o5 =3 )% )

where ¢l = §(s; = j) is an indicator function. Combining (6) and (7), and taking the deriva-
tives of this expectation with respect to the parameters of the distribution, the following
estimates are obtained (see Murphy (1998) for derivations):

K Ty -1

Bj = [i%% tht 1”22% Xt 1Xt1 (8)

. — i . (J)thlwltc _ Bj i t(.])xt 1xlf (9)
! i t “ @) Ek t 2t ()
Equations (8) and (9) are written in terms of the expectations
() = Bla|{xf 1] = Pr(sf = j[{x{}") (10)



Letting xf , = T and B; = fi; in (8) and (9) yields the estimation equations for the case
when the observation nodes are only dependent on the hidden discrete state.

For each discrete node sgm), the parameter set consists of a conditional probability table
where each entry 6, , is the subtable given by Pr (sgm) = jlpa(si™) = n), where pa(s) is the
set, of parent nodes of state s. B The maximum likelihood estimate of the discrete parameters

is then given by

D VD VLD DL eI (R Y

where f(j,n) = Pr(s¥™ = j, pa(s*"™ )= n| {x*}*).

(11)

The EM algorithm consists of iteratively collecting the expected sufficient statistics y;
and (; in the E step, and updating the parameters of the model according to equations (8)-
(11) in the M step. Inference on these graphs (evaluating the marginals above) can be done
via the junction tree algorithm (Jensen, 1996). In this scheme, the observations are entered
as evidence into the junction tree and propagated. After two full rounds of message passing,
the junction tree is consistent (all adjacent cliques agree on the marginal probabilities over
their separators), and each clique of the tree contains a joint probability distribution over the
clique variables and the entered evidence. The posterior over a variable of interest can then
be obtained by marginalization over any clique which contains it. A similar marginalization
can be applied to obtain the probability of the observation that is needed in the classification

step.

For the implementations reported here, we have modeled the output distributions with
unimodal Gaussian densities. The models’ free parameters have been chosen as follows: a
single HMM with 5 states; a mixture of HMMs with pre-clustering with 5 states on each
local model; an FHMM with 2 chains and 2 states per chain; an ARHMM with 1 chain
and 3 states per chain; and an HMDT with 2 chains. We used full covariance matrices on
the single HMM and on the mixture of HMMs, and diagonal covariance matrices on the

remaining models.

4.2 Mixture of Models

In addition to the single architectures just described, we also consider the performance of
a mixture model obtained by combining several of the single structures described in the
previous section. We have in particular implemented a model which combines several simple
HMMs and their individual contributions to classify a time series. Figure 3 shows this model

10



generatively: the n® model is selected with probability a, (with ¥, a,, = 1), and then a

time series is generated according to the parameters )\, of that model.

Gy

Figure 3: Mixture of HMMs Model

We approach estimating the parameters of such a model for time series classification
in two stages. In the first stage, an unsupervised clustering approach is used to discover
clusters of the training data in the feature space, where it is assumed the data of each
cluster is governed by a single underlying hidden Markov model. In the second stage, the
data from each cluster is further used in a supervised approach to create cluster-dependent
class-conditional models. In this mixture model, therefore, there are two hierarchical levels:
at the top level we have a set of N models which partitions the data set, irrespective of the
class of the data, into N clusters. At the lower level, we have a set of at most P models

(where P is the number of classes) for each of the N clusters.

We estimate the data assignment to the clusters and the parameters of their underlying
models by iteratively embedding the HMM training algorithm described in the previous
section (which learns the parameters of a cluster given a particular data assignment) within
a K-means algorithm (which reassigns time series to clusters according to the probability of

membership to each cluster). This algorithm is outlined below:

Given N clusters and a data set consisting of K time series X = {x!,---,x%}, let
AD (n =1,---,N) be the parameters of the n* HMM at the [* iteration and let A\’ =

argmax,, P(x*¥|A\()) be the cluster that maximizes the probability of the k** time series at the

11



0

It iteration and Ai,

its parameters.

1. Initialize cluster memberships Randomly assign time series to clusters to obtain data
sets for each cluster (). Set [ = 0.

2. Find initial total log likelihood of the assignment: P(®) = ¥~, log P(x ’“\)\ )

3. Forn=1,---, N, apply the parameter re-estimation formulas detailed in the previous
section to {X}) to obtain the estimates A{F1).

4. For k = 1,---,K find A\ = argmax, P(x¥|\(+1)) (via the forward-backward or
Viterbi algorlthms) (Rabiner and Juang, 1993).

5. Forn=1,---, N, let X! = {x"} for all x* whose n;(cHl) n.

: 1+1) _ ki) (+1)
6. Find P) = ¥, log P(x*[A; ).

7. If d(PU+Y), PW) > ¢ (where d(-,-) and € define some convergence criterion), let [ = [ +1
and go to 3; otherwise, stop.

This unsupervised learning procedure is used to identify time series which form clusters in
the feature space and is used as a preamble for building cluster dependent supervised learners
which exploit the “locality” of data sets in regions of the space. The models in the second
stage are therefore trained with only a portion of the categorical data available for each class,
namely those time series which are grouped in a common cluster. HMMs have also been
used to implement the cluster-dependent class-conditional models at this stage using the
same HMM structure and output distribution forms from the unsupervised learning stage.
Estimating the parameters of these models can be done following the formalism introduced
in the previous section for training graphical models. The results of the unsupervised and
supervised learning stages can then be combined for classification using Bayes rule. The
posterior probability of a class given an observation is given by summing the cluster- and

class-dependent posterior probabilities over the contribution of each of the N clusters:

p(wlxt) =Y p(w, nlx;) = Zp X¢|w, n)p(n|w)p(w) (12)

where the quantity p(n|w) can be estimated from the output of the clustering. Assuming
equal priors on all classes, and a maximum a posteriori classification scheme, the following
decision rule is then obtained:

N
@ = argmax ; p(w;|x;) = argmax, Zp(xt\wl, n)p(n|w;) (13)

n

12



It would be a desirable feature of the unsupervised learning stage to have it yield a
partition of the data which is as homogeneous as possible; that is, we would like to obtain a
partition which yields clusters with representatives from as few classes as possible. We can
diagnose the homogeneity of the clusters by considering the outcome of the unsupervised
algorithm in terms of two multinomial variables: the class of the k™ data sequence xF (wy)
and the cluster to which it is assigned (¢ € n = 1---N). The clustering algorithm may
then be viewed as yielding a data set {wg, cx}j—; to which we want to apply a hypothesis
test to determine whether the set of labels and the set of clusters were generated by different
multinomial distributions or by the same multinomial. More formally, we would like to
know the probability that the sets Q = {w}, and C = {c}, were generated by the same
distribution:

p(&2, Cls)p(s)
p(©, Cls)p(s) + p(Q2, C|d)p(d)
= —m (14)

p(2,Cls) p(s)

p(S|Q,C) =

where the labels s and d indicate same or different distributions. The main quantity involved
in computing (14) is the ratio of evidence of the data sets under different and same distri-
butions %(%%, a quantity which may be written in terms of factorized and joint evidence

%. Let the class w take on one of J outcomes, and let the cluster c take on one of N

outcomes. Define the following partial counts
K
Kj’n = Z (5wkaj5ck7n
k=1
N
K; = Z Kijn
n=1
J
Ko, = Z Kijn
i=1

It can be shown (Minka, 1999) that, under the assumption of multinomial distributions, the
evidence ratio in (14) is given by

p()p(C) _
p(2,0)
T(JN D(K;+N) 1« T(Kn+J (1
F(I§+J3V) I vy 1In (F(J) 'Mjm r(1+(K)j,n) (15)

The quantity in (15) also has an interpretation as the mutual information between the vari-
ables w and ¢ (Minka, 1999). Equation (14) may be used to determine whether the clustering
procedure has introduced some dependencies between labels and clusters. Furthermore, it

13



may be used together with the clustering algorithm above to select the number of clusters
which establishes the largest dependency between variables. For the results reported in this
paper, we have considered mixture models with 2 to 6 components, and chosen the number

of components which maximizes (14) on the training set.

5 Modeling Features at the Utterance Level

Modeling of linguistic phenomena requires that we choose an adequate time scale to capture
relevant details. For speech recognition, a suitable time scale might be one that allows
representing phonemes. For the supralinguistic phenomena we are interested in modeling,
however, we wish to investigate whether a coarser time scale suffices. The database used
in this study consists of short and simple utterances (with presumably simpler structures
than those found in unconstrained speech), and hence, global utterance-level features might
provide stress discrimination. A simple way to obtain an utterance-level representation of the
original dynamic feature set is to use a statistic of each feature time series defined along an
utterance (e.g. its sample mean, median, etc.). For the simulations here we have chosen the
sample mean of each dynamic feature as the utterance-level feature value. Since the temporal

dynamics are now missing, we use static classifiers to discriminate the four categories.

We consider two classification schemes, a support vector machine (SVM) and a neural
network (ANN). A SVM implements an approximation to the structural risk minimization
principle in which both the empirical error and a bound related to the generalization ability
of the classifier are minimized. The SVM fits a hyperplane that achieves maximum margin

between two classes; its decision boundary is determined by the discriminant
fx) = K (x,%;) + b (16)
i

where x; and y; € {—1,1} are the input-output pairs, K(x,y) = ¢(x) - ¢(y) is a kernel
function which computes inner products, and ¢(x) is a transformation from the input space to
a higher dimensional space. In the linearly separable case, ¢(x) = x. A SVM is generalizable
to non linearly separable cases by first applying the mapping ¢(-) to increase dimensionality
and then applying a linear classifier in the higher-dimensional space. The parameters of this
model are the values );, non-negative constraints that determine the contribution of each
data point to the decision surface, and b, an overall bias term. The data points for which

Ai # 0 are the only ones that contribute to (16) and are known as support vectors. Fitting
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an SVM consists of solving the quadratic program (Osuna et al., 1997):

max F(A) = A-1—%A-DA

0

c1

0 (17)

subject to A-y
A
A

IV IA

where A = [A\;---A) and D is a symmetric matrix with elements D, ; = v;y,K (x;,%;), and
C is a non-negative constant that bounds each )\;, and which is related to the width of the

margin between the classes. Having solved A from the equations in (17), the bias term can
be found:

b= —% Z; \i¥i (K(x_, x;) + K (x4, x,)) (18)

where x_ and x, are any two correctly classified support vectors from classes —1 and +1
respectively (Gunn, 1998).

We also consider a two-layer ANN classifier providing a mapping of the form
zZ = f(X) = gz(ngl(Wlx -+ bl) + bg) (19)

where g;, W; and b; are the non-linear activation unit, weight matrix and bias vector respec-
tively associated with each layer. We have trained a ANN to minimize the following error
criterion
E:Egg—i-Ew:—Zti-ln(zi)-i—HwH2 (20)
i

where t; is a k x 1 vector of zero-one target values encoding the class of the x; data point,
and w is a vector containing all the parameters of the network (the entries of W; and b;).
The first error term (E;) is the negative cross-entropy between the network outputs and
the desired target values. Minimizing this error function is equivalent to maximizing the
likelihood of the data set of target values given the input patterns. The second term in
(20) (E,) is a weight decay regularizer that penalizes larger sizes of network parameters
(controlling smoothness of the decision surface and regularization ability of the machine)

(Bishop, 1995). The weights of the network are updated according to the rule

Aw = —ag—VEv — (H+uD) (g +w) (21)

where g =Y, 8" =%, 55% is the gradient of the cross-entropy error function with respect to
the network weights and H = ¥, g'(g%)T is the outer product approximation to the Hessian
matrix. The parameter p is a momentum parameter chosen adaptively to speed convergence.

The derivatives needed to compute (21) are calculated using standard backpropagation.
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For the simulations reported here, we have built SVMs with a Gaussian kernel function
having width parameter o = 5, and two-layer ANNs with 10 and 4 hidden units, and sigmoid
and softmax activation units on each layer respectively.

6 Results and Discussion

The speech data of 4 subjects was first divided into a training and testing set comprising
approximately 80% and 20% of the data set respectively. The following labels will be used to
denote the four categories of data: FF, SF, F'S; SS. The first letter denotes whether the data
came from a fast (F) or slow (S) driving speed condition; the second indicates the frequency
with which the driver was presented with an arithmetic task: every 4 seconds (fast) (F) or
every 9 (slow) (S). We applied the models described above to a subject-dependent task (fitting
each model to the data of only one subject at a time) as well as to a subject-independent task
(pooling the data of all subjects and fitting each model to the global data). The results of
the training and testing stage for each one of the subjects as well as the subject-independent

results are summarized in Tables 1 through 7.

Subject Training Rec. Rates (%) Testing Rec. Rates (%)

FF SF FS SS | Overall | FF SF FS SS | Overalll
72.10 | 89.47 | 53.19 | 76.47 | 68.25 | 83.33 | 75.00 0 75.00 | 50.00
68.42 | 70.83 | 70.00 | 95.24 | 73.98 | 41.67 0 23.08 | 40.00 | 30.30
60.00 | 25.00 | 71.43 | 57.14 | 56.76 | 71.43 0 66.67 0 42.31
68.42 | 72.22 | 43.90 | 55.56 | 58.26 | 66.67 | 60.00 | 8.33 | 42.86 | 41.67

| ANl [[59.74 | 41.10 | 34.57 [ 44.16 | 46.53 | 48.65 | 34.09 | 18.18 | 15.00 | 32.52 |

=Wl N —

Table 1: Classification Results (Factorial Hidden Markov Model)

Subject Training Rec. Rates (%) Testing Rec. Rates (%)

FF SF FS SS | Overall | FF SF FS SS | Overall
97.67 | 94.74 | 95.74 | 94.12 | 96.03 || 83.33 | 37.50 | 50.00 | 25.00 | 50.00
92.10 | 91.67 | 100 100 95.94 || 66.67 | 33.33 | 38.46 0 42.43
91.43 | 75.00 | 88.57 | 95.24 | 88.29 || 71.43 | 33.33 | 55.56 0 46.15
86.84 | 94.44 | 87.80 | 100 90.44 || 66.67 | 40.00 | 58.33 0 47.22

| Al [[55.19]55.21[58.02]76.62 | 59.16 | 37.84 [ 18.18 | 27.27 [ 40.00 | 29.27 |

=W N

Table 2: Classification Results (Single Autoregressive Hidden Markov Model)

Tables 1 through 5 show the results of the five time series classifiers (FHMM, ARHMM,
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Subject Training Rec. Rates (%) Testing Rec. Rates (%)

FF SF FS SS | Overall | FF SF FS SS | Overall
08.14 | 89.47 | 57.45 | 64.71 | 63.49 100 | 37.50 | 20.00 | 50.00 | 46.43
73.68 | 62.50 | 47.50 | 66.67 | 61.79 | 33.33 0 15.38 | 20.00 | 21.21
71.43 | 35.00 | 54.28 | 66.67 | 58.56 || 85.71 0 55.56 0 42.31
65.79 | 77.78 | 56.10 | 77.78 | 66.09 | 58.33 | 60.00 | 25.00 | 57.14 | 47.22

| Al ][ 58.44[49.08[29.63]46.75 | 48.42 | 54.05[40.91 [ 13.64 [ 20.00 | 36.59 |

=W N

Table 3: Classification Results (Hidden Markov Decision Tree)

Subject Training Rec. Rates (%) Testing Rec. Rates (%)

FF Sk FS SS | Overall | FF SFE FS SS | Overall
95.35 | 100 | 94.74 | 94.12 | 96.83 100 | 40.00 | 25.00 | 50.00 | 50.00
97.37 | 90.00 | 91.67 | 100 94.31 | 83.33 | 38.46 0 40.00 | 51.52
97.14 | 88.57 | 60.00 | 90.48 | 86.49 || 85.71 | 55.56 0 0 42.31

100 | 97.56 | 100 100 99.13 || 75.00 | 66.67 | 60.00 0 55.56

| Al [[74.68 | 71.17 [ 38.27 [ 67.53 | 66.11 | 67.57 | 40.91 | 4.6 [ 30.00 | 40.65 |

=W N

Table 4: Classification Results (Single Hidden Markov Model)

HMDT, HMM and the mixture of HMM). Tables 6 and 7 summarize the results with a
support vector machine (SVM) and a neural network (ANN). In order to be able to assess
the performance of each classifier across subjects in the subject-dependent task, the mean
value of the overall recognition rates for training and testing sets for each of these classifiers
is shown in Table 8. Finally, Tables 9 through 12 shows the confusion matrix obtained for
the best performing model (H-HMM) for each subject.

The average overall recognition rates reported in Table 8 show that on the subject-
dependent tests the FHMM and HMDT models achieve similar recognition rates on training
and testing sets. The HMM and ARHMM also achieve similar recognition rates on both data
sets, and both sets of classifiers are outperformed by the M-HMM, which achieves the highest
performance of all models considered. The time series classifiers can be ranked according to
their performance as follows: M-HMM, HMM, ARHMM, FHMM, HMDT. This ranking is
consistent with the performance on both the training and testing sets. The recognition rates
of the utterance-level feature set are not significantly different from the recognition rates
obtained with the dynamic feature set, except in the case of the M-HMM, where the test set
performance is notably better.

When we compare the average performance of the classifiers in the subject-dependent
tests (Table 8) with the results obtained in the subject-independent runs (last row of Tables
1 through 7), we can see that the performance degrades in the subject-independent case. The
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Subject Training Rec. Rates (%) Testing Rec. Rates (%)
FF SF FS SS | Overall | FF SFE FS 5SS | Overall
1 100 | 97.87 | 100 100 99.21 || 83.33 | 50.00 | 25.00 0 42.86
2 100 100 100 100 100 100 | 69.23 0 40.00 | 69.70
3 97.14 |1 94.29 | 70.0 | 85.71 | 89.19 100 100 | 83.33 | 100 96.15
4 100 100 | 94.44 | 88.89 | 97.39 | 16.67 | 91.67 0 0 36.11
| Al || 74.68 | 83.44 | 81.48 | 84.42 [ 80.42 | 48.65[65.91 | 40.91 | 35.00 | 51.22
Table 5: Classification Results (Mixture of HMMs)
Subject Training Rec. Rates (%) Testing Rec. Rates (%)
FF SF FS SS | Overall | FF SF FS SS | Overall
1 74.42 | 31.58 | 57.45 | 47.06 | 57.94 | 66.67 | 12.50 | 50.00 | 75.00 | 46.43
2 65.79 | 75.00 | 42.50 | 38.10 | 55.28 || 75.00 | 33.33 | 23.08 | 80.00 | 51.51
3 71.43 | 55.00 | 77.14 | 4762 | 65.75 | 71.43 | 16.67 | 77.78 0 50.00
4 02.63 | 66.67 | 68.29 | 44.44 | 59.13 || 25.00 | 60.00 | 58.33 | 14.28 | 38.89
| Al [[46.75[22.09 | 21.00 [ 10.39 | 28.00 | 62.16 | 29.55 | 18.18 [ 35.00 | 38.21
Table 6: Classification Results (Support Vector Machine)
Subject Training Rec. Rates (%) Testing Rec. Rates (%)
FF SF FS SS | Overall | FF SF FS SS | Overall
1 86.05 | 73.68 | 91.49 | 88.23 | 86.51 || 33.33 | 50.00 | 20.00 | 75.00 | 39.28
2 86.84 | 91.67 | 90.00 | 61.90 | 84.55 || 50.00 | 33.33 | 53.85 | 40.00 | 48.48
3 85.71 | 65.00 | 94.26 | 66.67 | 81.08 100 | 33.33 | 77.78 0 61.53
4 76.32 | 55.56 | 90.24 | 61.11 | 75.65 | 58.33 | 60.00 | 66.67 | 14.28 | 52.77
| Al [[56.50[63.80] 0 | | 40.21 [[59.46[61.36] 0 | 0 | 39.84

Table 7: Classification Results (Neural Network)

Models || Training (%) | Testing (%)
FHMM 64.31 41.07
ARHMM 92.67 46.45
HMDT 62.48 39.29
HMM 94.78 49.85
M-HMM 96.44 61.20
SVM 99.52 46.70
ANN 81.94 50.57

Table 8: Mean Recognition Rates for all Classifiers in the Subject-Dependent Task
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mixture model proposed in this paper, however, still manages to outperform the competing
models in the subject-independent case. It can be argued that some of the robustness of
the mixture model in capturing variability within a subject carries over when handling the
variability across subjects since the unsupervised clustering phase tends to divide the data

into more homogeneous subsets irrespective of the speaker.

Training Testing
FF|SF | FS|SS | FF | SF | FS | SS
FE || 43| 0 | 0] 0 5 1 107]0
SF| 0 |46 | 0 | 1 4 151110
FS| 0|0 190 11512710
SS|| 0 (0|0 |17 1|3 ]0]O0

Table 9: Confusion Matrices on Training and Testing Sets for Subject 1 (M-HMM model).

Training Testing
FF|SF | FS|SS | FF | SF | FS | SS
FF(|38 ] 0|0 /|0 |12 0] 0|0
SE| 0 |40 0 | O 1191310
FS| 0| 0 ]24] 0 211 ,07]0
SS|I 00|00 20y 3 |0] 02

Table 10: Confusion Matrices on Training and Testing Sets for Subject 2 (M-HMM model).

Since we are modeling four different categories, the expected overall performance of a
classifier which labels the data at random is 25%. All classifiers exceed this overall perfor-
mance although they fall short of achieving a near-perfect recognition rate. However, it is
important that we bear in mind that a perfect recognition rate may be a too optimistic fig-
ure. Humans, for instance, consistently achieve recognition rates below 100% on perceptual
experiments on decoding affect from speech. Bezooijen (1984) reports recognition rates on a
set of five discrete affective states (fear, disgust, joy, sadness and anger) that range from 49%
to 74% whereas Pittam and Scherer (1993) report rates on the same set of affective states
ranging from 28% to 72%. More recent work by Polzin (2000) reports human recognition
figures on a set of four affective states labeled as fear, happiness, sadness and anger ranging
from 58.5% to 80.1% with an overall rate of 69%.

For systems that aim to recognize the perceptual labels which humans “hear” (a system
using an annotation convention driven by the effect of the utterances on the listeners, as we
discussed in section 2), the human performance figures offer a reasonable yardstick by which
we should evaluate the performance of an automated system. However, for systems aiming to
recognize labels governed by the state of the speaker (cause-type of annotation), establishing
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Training Testing

FF |SF |FS|SS | FF | SF | FS | 5SS
FE | 34| 0| 1]0 710 107]0
SF{ 1 (330 |1 019,010
FS | 2 14|10 1105 1]0
SS || 1 1 1 (18 0| 0] 0| 4

Table 11: Confusion Matrices on Training and Testing Sets for Subject 3 (M-HMM model).

Training Testing
FF |SF | FS | SS | FF | SF | FS | SS
FF| 38| 0| 0]0 2 (101 0] 0
SE (| 0 [41] 0 | O 1 |11 0] 0
FS| 1|0 |17 0 21310710
SS || 1 11701160 7|0]0

Table 12: Confusion Matrices on Training and Testing Sets for Subject 4 (M-HMM model).

a benchmark is less straightforward. Comparison with other studies that use a similar
labeling approach to build automatic recognizers may be useful to obtain an impressionistic
idea of what is accomplishable. However, as the context in which the utterances are produced
often varies significantly across these studies, it is important that we carry such comparisons
with due care. Even affective states that are labeled with the same descriptor may correspond
to very different realities about the internal state of the speaker. McGilloway et al. (2000)
have carried out a study in which they used emotive texts to induce affect in speech. This
study can therefore be considered similar in so far as the labels capture information about
the state of the speaker. They report recognition rates ranging from 50% to 64% for a set
of five states (fear, happiness, neutral, sadness and anger). Bearing the above mentioned
caveats in mind, we can see the performance that the M-HMM achieves on some subjects as

being competitive with some of the results published elsewhere in the literature.

There is variability, however, on how these systems perform across subjects. This result
may be due to the fact that subjects with the lower recognition rates do not show sufficient
variability across the categories we are modeling, but it may also be attributed to a limita-
tion of the models or the features in capturing the variability that the subjects may have
exhibited. This is an issue that would require further research in order to draw more rigorous
conclusions. It is also important to note the variability of the classifiers in modeling each of
the categories considered independently. Whereas all the models provide an adequate fit to
the FF category, each of them fails to consistently predict above random the remaining cat-
egories for all subjects (see Tables 1-7). This may be due to one or more of several reasons:
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(i) the inherent modeling capacity of the models considered, (ii) an underoptimized local so-
lution found during training, (iii) the discriminative capacity of the features for the different
categories, or (iv) the inherent noise in the ground truth of the categories of driver’s stress
due to how accurately the experimental procedure was able to effectively induce the assigned
labels. Since the FF category is the most “extreme” in terms of driving speed and cognitive
load on the driver, it is tempting to assume that the better performance on this label may
be related to how reliably the driver became stressed in these portions of the experiment.
We have also included for completeness confusion matrices that show the kinds of missclas-
sifications that the best performer (mixture model) tends to produce (Tables 9-12). There
is no consistent pattern that emerges from inspecting these confusion matrices: no category
is consistently mistaken for another one when the results are evaluated across subjects. We
have dealt with subject dependency by fitting a different system to each speaker. One open
question worth investigating is whether this dependency can be reduced without having to
go to the extreme of fitting a different set of parameters to each speaker. An alternative
solution might be finding prototypes of speakers in the space of speaker variability and fit a
model to each prototype rather than to each speaker. We are advancing the hypothesis that
the mixture model might offer a good point of departure for this kind of modeling (as well as
modeling any categories involving variability across speakers) because of how it proceeds in
dividing the feature space into similar clusters. A dataset with a larger number of speakers

would be needed, however, in order to evaluate this hypothesis.

7 Conclusions

In this paper we have investigated the use of features based on subband decompositions and
the TEO for classification of stress categories in speech produced in the context of driving
at variable speeds while engaged on mental tasks of variable cognitive load for a set of 4
subjects. We investigated the performance of several classifiers on two representations of the
speech waveforms: using a feature set representing intra-utterance dynamics and a sparser
set consisting of more global utterance-level features. The best performance was obtained by
using the dynamic feature set and by exploiting local models and then combining them in a
weighted classification scheme. All classifiers produced recognition rates above random for all
subjects, but, with the exception of the fast-fast category, showed variability in consistently
predicting each of the remaining stress conditions.
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